Former-commit-id: 60d6ad64d7c9f6445b0df8de0153c3a311974198
This commit is contained in:
@@ -7,7 +7,7 @@ from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple
|
||||
from transformers import TrainerState, TrainerControl
|
||||
|
||||
from trl import PPOTrainer
|
||||
from trl.core import LengthSampler
|
||||
from trl.core import LengthSampler, PPODecorators, logprobs_from_logits
|
||||
|
||||
from llmtuner.extras.logging import get_logger
|
||||
from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor
|
||||
@@ -35,6 +35,7 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: List["LogCallback"],
|
||||
compute_dtype: torch.dtype,
|
||||
**kwargs
|
||||
):
|
||||
PPOTrainer.__init__(self, **kwargs)
|
||||
@@ -42,6 +43,7 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
self.finetuning_args = finetuning_args
|
||||
self.generating_args = generating_args
|
||||
self.log_callback = callbacks[0]
|
||||
self.compute_dtype = compute_dtype
|
||||
self.state = TrainerState()
|
||||
self.control = TrainerControl()
|
||||
|
||||
@@ -74,7 +76,7 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
gen_kwargs = self.generating_args.to_dict()
|
||||
gen_kwargs["eos_token_id"] = [self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids
|
||||
gen_kwargs["eos_token_id"] = list(set([self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids))
|
||||
gen_kwargs["pad_token_id"] = self.tokenizer.pad_token_id
|
||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
||||
|
||||
@@ -183,12 +185,74 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
|
||||
replace_model(unwrapped_model, target="reward")
|
||||
batch = self.prepare_model_inputs(queries, responses)
|
||||
_, _, values = self.model(**batch, output_hidden_states=True, return_dict=True)
|
||||
if values.size(0) != batch["input_ids"].size(0):
|
||||
if values.size(0) != batch["input_ids"].size(0): # adapt chatglm2
|
||||
values = torch.transpose(values, 0, 1)
|
||||
rewards = [reward for reward in values[:, -1].float().detach().cpu()] # use fp32 type
|
||||
replace_model(unwrapped_model, target="default")
|
||||
return rewards
|
||||
|
||||
@PPODecorators.empty_cuda_cache()
|
||||
def batched_forward_pass(
|
||||
self,
|
||||
model: "AutoModelForCausalLMWithValueHead",
|
||||
queries: torch.Tensor,
|
||||
responses: torch.Tensor,
|
||||
model_inputs: dict,
|
||||
return_logits: Optional[bool] = False
|
||||
):
|
||||
r"""
|
||||
Calculates model outputs in multiple batches.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
"""
|
||||
bs = len(queries)
|
||||
fbs = self.config.mini_batch_size
|
||||
all_logprobs = []
|
||||
all_logits = []
|
||||
all_masks = []
|
||||
all_values = []
|
||||
|
||||
for i in range(math.ceil(bs / fbs)):
|
||||
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
|
||||
query_batch = queries[i * fbs : (i + 1) * fbs]
|
||||
response_batch = responses[i * fbs : (i + 1) * fbs]
|
||||
input_ids = input_kwargs["input_ids"]
|
||||
attention_mask = input_kwargs["attention_mask"]
|
||||
|
||||
with torch.cuda.amp.autocast(dtype=self.compute_dtype): # support bf16
|
||||
logits, _, values = model(**input_kwargs)
|
||||
|
||||
if values.size(0) != input_ids.size(0): # adapt chatglm2
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
|
||||
masks = torch.zeros_like(attention_mask)
|
||||
masks[:, :-1] = attention_mask[:, 1:]
|
||||
|
||||
for j in range(len(query_batch)):
|
||||
start = len(query_batch[j]) - 1
|
||||
if attention_mask[j, 0] == 0: # offset left padding
|
||||
start += attention_mask[j, :].nonzero()[0]
|
||||
end = start + len(response_batch[j])
|
||||
|
||||
masks[j, :start] = 0
|
||||
masks[j, end:] = 0
|
||||
|
||||
if return_logits:
|
||||
all_logits.append(logits)
|
||||
else:
|
||||
del logits
|
||||
all_values.append(values)
|
||||
all_logprobs.append(logprobs)
|
||||
all_masks.append(masks)
|
||||
|
||||
return (
|
||||
torch.cat(all_logprobs),
|
||||
torch.cat(all_logits)[:, :-1] if return_logits else None,
|
||||
torch.cat(all_values)[:, :-1],
|
||||
torch.cat(all_masks)[:, :-1],
|
||||
)
|
||||
|
||||
def save_model(self, output_dir: Optional[str] = None) -> None:
|
||||
r"""
|
||||
Saves model checkpoint.
|
||||
|
||||
Reference in New Issue
Block a user