support disable shuffling
Former-commit-id: 9d8c35fd6b838ede0bd6827c6c6121f2cba2b11b
This commit is contained in:
81
tests/train/test_sft_trainer.py
Normal file
81
tests/train/test_sft_trainer.py
Normal file
@@ -0,0 +1,81 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import pytest
|
||||
from transformers import DataCollatorWithPadding
|
||||
|
||||
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
|
||||
from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
from llamafactory.train.sft.trainer import CustomSeq2SeqTrainer
|
||||
|
||||
|
||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||
|
||||
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
||||
|
||||
TRAIN_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"stage": "sft",
|
||||
"do_train": True,
|
||||
"finetuning_type": "lora",
|
||||
"dataset": "llamafactory/tiny-supervised-dataset",
|
||||
"dataset_dir": "ONLINE",
|
||||
"template": "llama3",
|
||||
"cutoff_len": 1024,
|
||||
"overwrite_cache": False,
|
||||
"overwrite_output_dir": True,
|
||||
"per_device_train_batch_size": 1,
|
||||
"max_steps": 1,
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataCollatorWithVerbose(DataCollatorWithPadding):
|
||||
verbose_list: List[Dict[str, Any]] = field(default_factory=list)
|
||||
|
||||
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
|
||||
self.verbose_list.extend(features)
|
||||
batch = super().__call__(features)
|
||||
return {k: v[:, :1] for k, v in batch.items()} # truncate input length
|
||||
|
||||
|
||||
@pytest.mark.parametrize("disable_shuffling", [False, True])
|
||||
def test_shuffle(disable_shuffling: bool):
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||
{"output_dir": f"dummy_dir/{disable_shuffling}", "disable_shuffling": disable_shuffling, **TRAIN_ARGS}
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
data_collator = DataCollatorWithVerbose(tokenizer=tokenizer)
|
||||
trainer = CustomSeq2SeqTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
**dataset_module,
|
||||
**tokenizer_module,
|
||||
)
|
||||
trainer.train()
|
||||
if disable_shuffling:
|
||||
assert data_collator.verbose_list[0]["input_ids"] == dataset_module["train_dataset"][0]["input_ids"]
|
||||
else:
|
||||
assert data_collator.verbose_list[0]["input_ids"] != dataset_module["train_dataset"][0]["input_ids"]
|
||||
Reference in New Issue
Block a user