support disable shuffling

Former-commit-id: 9d8c35fd6b838ede0bd6827c6c6121f2cba2b11b
This commit is contained in:
hiyouga
2024-12-19 08:53:21 +00:00
parent eca06531c3
commit 01eeae50b5
9 changed files with 139 additions and 12 deletions

View File

@@ -34,7 +34,7 @@ from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
if TYPE_CHECKING:
from torch.utils.data import Dataset
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
from transformers.trainer import PredictionOutput
from ...hparams import FinetuningArguments
@@ -85,7 +85,16 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
return super().create_scheduler(num_training_steps, optimizer)
@override
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
if self.finetuning_args.disable_shuffling:
return torch.utils.data.SequentialSampler(self.train_dataset)
return super()._get_train_sampler()
@override
def compute_loss(
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
r"""
Fixes the loss value for transformers 4.46.0.
https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/trainer.py#L3605