merge model part to the text stream

Former-commit-id: b6fcb832ddaed4647d6f2b926f3dfccd47f3ea84
This commit is contained in:
BUAADreamer
2024-04-25 08:20:41 +08:00
parent 5142349661
commit 00e2a272ef
5 changed files with 24 additions and 172 deletions

View File

@@ -1,10 +1,9 @@
from .loader import load_config, load_model, load_tokenizer, load_mm_model
from .loader import load_config, load_model, load_tokenizer, load_processor
from .utils.misc import find_all_linear_modules, load_valuehead_params
__all__ = [
"load_config",
"load_model",
"load_mm_model",
"load_tokenizer",
"load_processor",
"load_valuehead_params",

View File

@@ -1,4 +1,4 @@
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, Union
import torch
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
@@ -21,11 +21,11 @@ logger = get_logger(__name__)
def init_adapter(
config: "PretrainedConfig",
model: "PreTrainedModel",
model: Union["PreTrainedModel","AutoModelForVision2Seq"],
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
) -> "PreTrainedModel":
) -> Union["PreTrainedModel","AutoModelForVision2Seq"]:
r"""
Initializes the adapters.
@@ -195,103 +195,4 @@ def init_adapter(
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model
def init_mm_adapter(
model: "AutoModelForVision2Seq", model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
use_clm=True,
) -> "AutoModelForVision2Seq":
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
if model_args.adapter_name_or_path is not None:
is_mergeable = True
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
is_mergeable = False
if is_deepspeed_zero3_enabled():
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
is_mergeable = False
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
adapter_to_merge = model_args.adapter_name_or_path[:-1]
adapter_to_resume = model_args.adapter_name_or_path[-1]
else:
adapter_to_merge = model_args.adapter_name_or_path
for adapter in adapter_to_merge:
model: "LoraModel" = PeftModel.from_pretrained(
model, adapter, offload_folder=model_args.offload_folder
)
model = model.merge_and_unload()
if len(adapter_to_merge) > 0:
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
if adapter_to_resume is not None: # resume lora training
model = PeftModel.from_pretrained(
model, adapter_to_resume, is_trainable=is_trainable, offload_folder=model_args.offload_folder
)
if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model)
else:
target_modules = finetuning_args.lora_target
if finetuning_args.use_llama_pro:
target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)
if (
finetuning_args.use_dora
and getattr(model, "quantization_method", None) is not None
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
):
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
"lora_alpha": finetuning_args.lora_alpha,
"lora_dropout": finetuning_args.lora_dropout,
"use_rslora": finetuning_args.use_rslora,
"modules_to_save": finetuning_args.additional_target,
}
if model_args.use_unsloth:
from unsloth import FastLanguageModel # type: ignore
unsloth_peft_kwargs = {
"model": model,
"max_seq_length": model_args.model_max_length,
"use_gradient_checkpointing": "unsloth",
}
model = FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
else:
if use_clm:
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
else:
lora_config = LoraConfig(
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
if (not finetuning_args.pure_bf16) and (not finetuning_args.use_badam):
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model
return model

View File

@@ -1,11 +1,11 @@
from typing import TYPE_CHECKING, Any, Dict
from typing import TYPE_CHECKING, Any, Dict, Union
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq
from trl import AutoModelForCausalLMWithValueHead
from ..extras.logging import get_logger
from ..extras.misc import count_parameters, try_download_model_from_ms
from .adapter import init_adapter, init_mm_adapter
from .adapter import init_adapter
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
from .utils.misc import load_valuehead_params, register_autoclass
from .utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
@@ -106,12 +106,12 @@ def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
def load_model(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
) -> "PreTrainedModel":
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
) -> Union["PreTrainedModel", "AutoModelForVision2Seq"]:
r"""
Loads pretrained model.
"""
@@ -134,7 +134,10 @@ def load_model(
if model_args.mixture_of_depths == "load":
model = load_mod_pretrained_model(**init_kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(**init_kwargs)
if model_args.use_mllm:
model = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(**init_kwargs)
if model_args.mixture_of_depths == "convert":
model = convert_pretrained_model_to_mod(model, config, model_args)
@@ -182,56 +185,4 @@ def load_model(
)
)
return model
def load_mm_model(
processor: "AutoProcessor",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
use_clm=True,
) -> "AutoModelForVision2Seq":
r"""
Loads pretrained model. Must after load_tokenizer.
"""
tokenizer = processor.tokenizer
init_kwargs = _get_init_kwargs(model_args)
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
model = None
if model is None:
init_kwargs["config"] = config
init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path
model: "AutoModelForVision2Seq" = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
patch_model(model, tokenizer, model_args, is_trainable)
register_autoclass(config, model, tokenizer)
model = init_mm_adapter(model, model_args, finetuning_args, is_trainable, use_clm)
if not is_trainable:
model.requires_grad_(False)
model.eval()
else:
model.train()
trainable_params, all_param = count_parameters(model)
if is_trainable:
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
trainable_params, all_param, 100 * trainable_params / all_param
)
else:
param_stats = "all params: {:d}".format(all_param)
logger.info(param_stats)
if model_args.print_param_status:
for name, param in model.named_parameters():
print(
"name: {}, dtype: {}, device: {}, trainable: {}".format(
name, param.dtype, param.device, param.requires_grad
)
)
return model
return model