[feature] adding orthogononal finetuning (OFT) to llama factory (#8623)

Co-authored-by: Zeju <zqiu@g003.internal.cluster.is.localnet>
Co-authored-by: Zeju <zqiu@login2.is.localnet>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
This commit is contained in:
Zeju Qiu
2025-08-18 12:22:47 +02:00
committed by GitHub
parent 1ada15981a
commit 003a2acb1a
13 changed files with 375 additions and 47 deletions

View File

@@ -56,13 +56,13 @@ LAYERNORM_NAMES = {"norm", "ln"}
LLAMABOARD_CONFIG = "llamaboard_config.yaml"
METHODS = ["full", "freeze", "lora"]
METHODS = ["full", "freeze", "lora", "oft"]
MOD_SUPPORTED_MODELS = {"bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"}
MULTIMODAL_SUPPORTED_MODELS = set()
PEFT_METHODS = {"lora"}
PEFT_METHODS = {"lora", "oft"}
RUNNING_LOG = "running_log.txt"

View File

@@ -122,6 +122,48 @@ class LoraArguments:
)
@dataclass
class OFTArguments:
r"""Arguments pertaining to the OFT training."""
additional_target: Optional[str] = field(
default=None,
metadata={
"help": (
"Name(s) of modules apart from LoRA layers to be set as trainable "
"and saved in the final checkpoint. "
"Use commas to separate multiple modules."
)
},
)
module_dropout: float = field(
default=0.0,
metadata={"help": "Dropout rate for the OFT fine-tuning."},
)
oft_rank: int = field(
default=0,
metadata={"help": "The intrinsic dimension for OFT fine-tuning."},
)
oft_block_size: int = field(
default=32,
metadata={"help": "The intrinsic dimension for OFT fine-tuning."},
)
oft_target: str = field(
default="all",
metadata={
"help": (
"Name(s) of target modules to apply OFT. "
"Use commas to separate multiple modules. "
"Use `all` to specify all the linear modules."
)
},
)
create_new_adapter: bool = field(
default=False,
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
)
@dataclass
class RLHFArguments:
r"""Arguments pertaining to the PPO, DPO and KTO training."""
@@ -400,7 +442,14 @@ class SwanLabArguments:
@dataclass
class FinetuningArguments(
SwanLabArguments, BAdamArgument, ApolloArguments, GaloreArguments, RLHFArguments, LoraArguments, FreezeArguments
SwanLabArguments,
BAdamArgument,
ApolloArguments,
GaloreArguments,
RLHFArguments,
LoraArguments,
OFTArguments,
FreezeArguments,
):
r"""Arguments pertaining to which techniques we are going to fine-tuning with."""
@@ -475,12 +524,13 @@ class FinetuningArguments(
self.freeze_extra_modules: Optional[list[str]] = split_arg(self.freeze_extra_modules)
self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2
self.lora_target: list[str] = split_arg(self.lora_target)
self.oft_target: list[str] = split_arg(self.oft_target)
self.additional_target: Optional[list[str]] = split_arg(self.additional_target)
self.galore_target: list[str] = split_arg(self.galore_target)
self.apollo_target: list[str] = split_arg(self.apollo_target)
self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"]
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
assert self.finetuning_type in ["lora", "oft", "freeze", "full"], "Invalid fine-tuning method."
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
@@ -490,6 +540,9 @@ class FinetuningArguments(
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")
if self.stage == "ppo" and self.reward_model_type == "oft" and self.finetuning_type != "oft":
raise ValueError("`reward_model_type` cannot be oft for Freeze/Full PPO training.")
if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.")

View File

@@ -111,8 +111,8 @@ def _verify_model_args(
raise ValueError("Adapter is only valid for the LoRA method.")
if model_args.quantization_bit is not None:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if finetuning_args.finetuning_type not in ["lora", "oft"]:
raise ValueError("Quantization is only compatible with the LoRA or OFT method.")
if finetuning_args.pissa_init:
raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA for a quantized model.")

View File

@@ -16,10 +16,11 @@ import re
from typing import TYPE_CHECKING
import torch
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
from peft import LoraConfig, LoraModel, OFTConfig, OFTModel, PeftModel, TaskType, get_peft_model
from transformers.integrations import is_deepspeed_zero3_enabled
from ..extras import logging
from ..extras.misc import check_version
from .model_utils.misc import find_all_linear_modules, find_expanded_modules
from .model_utils.quantization import QuantizationMethod
from .model_utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
@@ -147,7 +148,10 @@ def _setup_lora_tuning(
cast_trainable_params_to_fp32: bool,
) -> "PeftModel":
if is_trainable:
logger.info_rank0("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
if finetuning_args.finetuning_type == "oft":
logger.info_rank0("Fine-tuning method: OFT")
else:
logger.info_rank0("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
@@ -223,17 +227,29 @@ def _setup_lora_tuning(
finetuning_args.additional_target = module_names
logger.warning_rank0("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
"lora_alpha": finetuning_args.lora_alpha,
"lora_dropout": finetuning_args.lora_dropout,
"use_rslora": finetuning_args.use_rslora,
"use_dora": finetuning_args.use_dora,
"modules_to_save": finetuning_args.additional_target,
}
if finetuning_args.finetuning_type == "lora":
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
"lora_alpha": finetuning_args.lora_alpha,
"lora_dropout": finetuning_args.lora_dropout,
"use_rslora": finetuning_args.use_rslora,
"use_dora": finetuning_args.use_dora,
"modules_to_save": finetuning_args.additional_target,
}
elif finetuning_args.finetuning_type == "oft":
peft_kwargs = {
"r": finetuning_args.oft_rank,
"oft_block_size": finetuning_args.oft_block_size,
"target_modules": target_modules,
"module_dropout": finetuning_args.module_dropout,
"modules_to_save": finetuning_args.additional_target,
}
if model_args.use_unsloth:
if finetuning_args.finetuning_type == "oft":
raise ValueError("Unsloth is currently not supported for OFT.")
model = get_unsloth_peft_model(model, model_args, peft_kwargs)
else:
if finetuning_args.pissa_init:
@@ -244,12 +260,19 @@ def _setup_lora_tuning(
logger.info_rank0(f"Using PiSSA initialization with FSVD steps {finetuning_args.pissa_iter}.")
peft_kwargs["init_lora_weights"] = f"pissa_niter_{finetuning_args.pissa_iter}"
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
if finetuning_args.finetuning_type == "lora":
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
**peft_kwargs,
)
elif finetuning_args.finetuning_type == "oft":
peft_config = OFTConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
**peft_kwargs,
)
model = get_peft_model(model, peft_config)
if is_trainable and cast_trainable_params_to_fp32:
for param in filter(lambda p: p.requires_grad, model.parameters()):
@@ -272,8 +295,8 @@ def init_adapter(
Note that the trainable parameters must be cast to float32.
"""
if is_trainable and getattr(model, "quantization_method", None) is not None:
if finetuning_args.finetuning_type != "lora":
raise ValueError("Quantized models can only be used for the LoRA tuning.")
if finetuning_args.finetuning_type not in ["lora", "oft"]:
raise ValueError("Quantized models can only be used for the LoRA or OFT tuning.")
if finetuning_args.pissa_init:
raise ValueError("Cannot initialize PiSSA adapter on quantized models.")
@@ -296,7 +319,7 @@ def init_adapter(
_setup_full_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
elif finetuning_args.finetuning_type == "freeze":
_setup_freeze_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
elif finetuning_args.finetuning_type == "lora":
elif finetuning_args.finetuning_type in ["lora", "oft"]:
model = _setup_lora_tuning(
config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32
)

View File

@@ -390,7 +390,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
batch: dict[str, torch.Tensor] = self.prepare_model_inputs(queries, responses)
unwrapped_model: AutoModelForCausalLMWithValueHead = self.accelerator.unwrap_model(self.model)
if self.finetuning_args.reward_model_type == "lora":
if self.finetuning_args.reward_model_type in ["lora", "oft"]:
replace_model(unwrapped_model, target="reward")
reward_model = self.model
else:
@@ -399,7 +399,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
with unwrap_model_for_generation(reward_model, self.accelerator), self.amp_context: # support bf16
values: torch.Tensor = reward_model(**batch, return_dict=True, use_cache=False)[-1]
if self.finetuning_args.reward_model_type == "lora":
if self.finetuning_args.reward_model_type in ["lora", "oft"]:
replace_model(unwrapped_model, target="default")
rewards = values.gather(dim=-1, index=(batch["attention_mask"].sum(dim=-1, keepdim=True) - 1))